Symmetric and antisymmetric forms of the Pauli master equation

نویسنده

  • A. Y. Klimenko
چکیده

When applied to matter and antimatter states, the Pauli master equation (PME) may have two forms: time-symmetric, which is conventional, and time-antisymmetric, which is suggested in the present work. The symmetric and antisymmetric forms correspond to symmetric and antisymmetric extensions of thermodynamics from matter to antimatter - this is demonstrated by proving the corresponding H-theorem. The two forms are based on the thermodynamic similarity of matter and antimatter and differ only in the directions of thermodynamic time for matter and antimatter (the same in the time-symmetric case and the opposite in the time-antisymmetric case). We demonstrate that, while the symmetric form of PME predicts an equibalance between matter and antimatter, the antisymmetric form of PME favours full conversion of antimatter into matter. At this stage, it is impossible to make an experimentally justified choice in favour of the symmetric or antisymmetric versions of thermodynamics since we have no experience of thermodynamic properties of macroscopic objects made of antimatter, but experiments of this kind may become possible in the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Dynamic Characteristic of Thermoelastic Waves in Thermoelastic Plates with Thermal Relaxation Times

In this paper, analysis for the propagation of general anisotropic media of finite thickness with two thermal relaxation times is studied. Expression of displacements, temperature, thermal stresses, and thermal gradient for most general anisotropic thermoelastic plates of finite thickness are obtained in the analysis. The calculation is then carried forward for slightly more specialized case of...

متن کامل

تحلیل ارتعاشات آزاد ورق های بیضوی ساخته شده از مواد FGM

This paper deals with a free vibration analysis of functionally graded elliptical plates with different classical boundary conditions on the basis of polynomial-Ritz method and classical plate theory. The proposed admissible function is capable to obtain accurate natural frequencies of various classical boundary conditions namely, clamped, free and simply supported edges. The mechanical propert...

متن کامل

Buckling Behaviors of Symmetric and Antisymmetric Functionally Graded Beams

The present study investigates buckling characteristics of both nonlinear symmetric power and sigmoid functionally graded (FG) beams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by the sigmoid-law distribution (S-FGM), and the symmetric power function (SP-FGM). These functions have smooth variation of properties across the boundary rather tha...

متن کامل

Wave Propagation in a Layer of Binary Mixture of Elastic Solids

This paper concentrates on the propagation of waves in a layer of binary mixture of elastic solids subjected to stress free boundaries. Secular equations for the layer corresponding to symmetric and antisymmetric wave modes are derived in completely separate terms. The amplitudes of displacement components and specific loss for both symmetric and antisymmetric modes are obtained. The effect of ...

متن کامل

Orr Sommerfeld Solver Using Mapped Finite Di?erence Scheme for Plane Wake Flow

Linear stability analysis of the three dimensional plane wake flow is performed using a mapped finite di?erence scheme in a domain which is doubly infinite in the cross–stream direction of wake flow. The physical domain in cross–stream direction is mapped to the computational domain using a cotangent mapping of the form y = ?cot(??). The Squire transformation [2], proposed by Squire, is also us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016